The aligned-rank transform (ART) allows for non-parametric analyses of variance. But how do we derive effect sizes from ART results?
NOTE: Before embarking down the path of calculating standardized effect sizes, it is always worth asking if that is what you really want. Carefully consider, for example, the arguments of Cummings (2011) against the use of standardized effect sizes and in favor of simple (unstandardized) effect sizes. If you decide you would rather use simple effect sizes, you may need to consider a different procedure than ART, as the ranking procedure destroys the information necessary to calculate simple effect sizes.
Let’s load the test dataset from vignette(“art-contrasts”)
:
Let’s fit a linear model:
#we'll be doing type 3 tests, so we want sum-to-zero contrasts
options(contrasts = c("contr.sum", "contr.poly"))
m.linear = lm(Y ~ X1*X2, data=df)
Now with ART:
Note that for Fixed-effects-only models and repeated measures models
(those with Error()
terms) ARTool also collects the sums of
squares, but does not print them by default. We can pass
verbose = TRUE
to print()
to print them:
## Analysis of Variance of Aligned Rank Transformed Data
##
## Table Type: Anova Table (Type III tests)
## Model: No Repeated Measures (lm)
## Response: art(Y)
##
## Df Df.res Sum Sq Sum Sq.res F value Pr(>F)
## 1 X1 1 294 1403842 845192 488.33 < 2.22e-16 ***
## 2 X2 2 294 984215 1265239 114.35 < 2.22e-16 ***
## 3 X1:X2 2 294 1119512 1129896 145.65 < 2.22e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can use the sums of squares to calculate partial eta-squared:
## Analysis of Variance of Aligned Rank Transformed Data
##
## Table Type: Anova Table (Type III tests)
## Model: No Repeated Measures (lm)
## Response: art(Y)
##
## Df Df.res F value Pr(>F) eta.sq.part
## 1 X1 1 294 488.33 < 2.22e-16 0.62420 ***
## 2 X2 2 294 114.35 < 2.22e-16 0.43754 ***
## 3 X1:X2 2 294 145.65 < 2.22e-16 0.49769 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can compare the above results to partial eta-squared calculated on the linear model (the second column below):
## eta.sq eta.sq.part
## X1 0.3562872 0.5991468
## X2 0.1890921 0.4423595
## X1:X2 0.2162503 0.4756719
The results are comparable.
We can derive Cohen’s d (the standardized mean difference) by dividing estimated differences by the residual standard deviation of the model. Note that this relies somewhat on the assumption of constant variance across levels (aka homoscedasticity).
As a comparison, let’s first derive pairwise contrasts for all levels of X2 in the linear model:
## NOTE: Results may be misleading due to involvement in interactions
Then divide these estimates by the residual standard deviation to get an estimate of d:
## contrast estimate SE df t.ratio p.value d
## C - D -1.9121 0.142 294 -13.428 <.0001 -1.8991
## C - E -1.8530 0.142 294 -13.013 <.0001 -1.8403
## D - E 0.0592 0.142 294 0.415 0.9093 0.0588
##
## Results are averaged over the levels of: X1
## P value adjustment: tukey method for comparing a family of 3 estimates
Note that this is essentially the same as the unstandardized estimate for this model; that is because this test dataset was generated with a residual standard deviation of 1.
We can follow the same procedure on the ART model for factor X2:
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df t.ratio p.value d
## C - D -123.13 9.28 294 -13.272 <.0001 -1.8769
## C - E -119.81 9.28 294 -12.914 <.0001 -1.8263
## D - E 3.32 9.28 294 0.358 0.9319 0.0506
##
## Results are averaged over the levels of: X1
## P value adjustment: tukey method for comparing a family of 3 estimates
Note how standardization is helping us now: The standardized mean differences (d) are quite similar to the estimates of d from the linear model above.
We can also derive confidence intervals on these effect sizes. To do
that, we’ll use the d.ci
function from the
psych
package, which also requires us to indicate how many
observations were in each group for each contrast. That is easy in this
case, as each group has 100 observations. Thus:
x2.contrasts.ci = confint(pairs(emmeans(m.linear, ~ X2))) %>%
mutate(d = estimate / sigmaHat(m.linear)) %>%
cbind(d = plyr::ldply(.$d, psych::d.ci, n1 = 100, n2 = 100))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df lower.CL upper.CL d
## 1 C - D -1.91212883 0.1423941 294 -2.2475590 -1.5766987 -1.8990660
## 2 C - E -1.85296777 0.1423941 294 -2.1883979 -1.5175376 -1.8403091
## 3 D - E 0.05916106 0.1423941 294 -0.2762691 0.3945912 0.0587569
## d.lower d.effect d.upper
## 1 -2.2317001 -1.8990660 -1.5630634
## 2 -2.1697674 -1.8403091 -1.5075275
## 3 -0.2185548 0.0587569 0.3359243
And from the ART model:
x2.contrasts.art.ci = confint(pairs(emmeans(m.art.x2, ~ X2))) %>%
mutate(d = estimate / sigmaHat(m.art.x2)) %>%
cbind(d = plyr::ldply(.$d, psych::d.ci, n1 = 100, n2 = 100))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df lower.CL upper.CL d d.lower
## 1 C - D -123.13 9.277428 294 -144.98434 -101.27566 -1.87694379 -2.2083738
## 2 C - E -119.81 9.277428 294 -141.66434 -97.95566 -1.82633505 -2.1550486
## 3 D - E 3.32 9.277428 294 -18.53434 25.17434 0.05060873 -0.2266816
## d.effect d.upper
## 1 -1.87694379 -1.5421619
## 2 -1.82633505 -1.4943094
## 3 0.05060873 0.3277681
And plotting both, to compare (red dashed line is the true effect):
rbind(
cbind(x2.contrasts.ci, model="linear"),
cbind(x2.contrasts.art.ci, model="ART")
) %>%
ggplot(aes(x=model, y=d, ymin=d.lower, ymax=d.upper)) +
geom_pointrange() +
geom_hline(aes(yintercept = true_effect),
data = data.frame(true_effect = c(-2, -2, 0), contrast = c("C - D", "C - E", "D - E")),
linetype = "dashed", color = "red") +
facet_grid(contrast ~ .) +
coord_flip()